women

Commercial Hardware and Techniques (part 3)

- 7 Kinds Of Fruit That Pregnant Women Shouldn’t Eat
- How to have natural miscarriage
- Foods That Cause Miscarriage
- Signs Proving You Have Boy Pregnancy

Dave Arnold on Industrial Hardware

Dave Arnold teaches at the French Culinary Institute in New York City, where he instructs students about modern techniques and equipment. 

How do you get someone to make the mental leap, to think analytically, and to think outside the box, while in the kitchen?

For people who don’t naturally think this way, you can’t expect them to start organically. You just want to give them another set of tools to work with in the kitchen. So we take something that they take for granted, like cooking eggs, and then break it into a zillion little components. We set up grids where we manipulate single variables. This means that we look at two variables at once in a grid format—for example, time against temperature—and manipulate one variable to see how it affects the other.

One of the classic examples is coffee. The variables are knowable, but why is so much coffee, specifically espresso, terrible? There are plenty of people that have machines that are good enough. It’s good to think analytically. If you’re messing around with coffee and you’re changing x, y, and z, it’s the equivalent of standing in front of a big control board with a bunch of dials and then just spinning the dials. To teach someone to make good coffee, you have to teach them how to lock down all their variables and then alter them one at a time. When you’re making espresso, most people choose to alter their grinds as their variable. They find that it’s easier to lock in the temperature, the dosing, the pressure, and then manipulate grinds. It teaches them how to manipulate variables and think analytically about something.

If we’re trying to figure out the variable of temperature with eggs, we’ll just do it. I’ll use a circulator to cook 10 eggs at very precise temperatures. We’ll do it multiple times and we’ll crack them and see what the behavior is. Or we’ll teach people how to make grids to test two different variables in order to figure out something like the effect of heat on searing meat. We’ll set up a tasting grid and they can taste it. I think this helps people to pick up that skill. It’s all about control and the ability to observe.

What sort of hardware have you repurposed for the kitchen?

Basically, a chef is going to want to steal anything that can help them heat differently or homogenize or blend differently. Most of what we use that has been repurposed aren’t necessarily our own ideas. You can crib things off of other people. Everyone is using liquid nitrogen now, which is fantastic stuff.

Even stuff normally found in the kitchen we just use in a different way. A lot of people are doing interesting work with pressure cooking nowadays. We use ultrasonic cleaners and rotovaps a lot. We’ve been running some experiments on torches recently. Why do things that are hit with torches taste like torch? I’m beginning to think that it’s the component added to gases to make them smell so that you can tell when you have a leak. I think the torch flavor is due to not fully combusting all of the stinky stuff. I wanted to crisp something big, and so I fired up the roofing torch with propane, and it didn’t taste bad. I tried to shoot a regular torch through a screen to see whether we could combust any of the torch smell by capturing it on the screen and blowing it through. That also works.

How do you balance experimenting with safety?

Teach yourself as much as you can about the risks involved with any potential new endeavor. The Internet is also good for that, because there are plenty of people who’ve already hurt themselves. Do a lot of research; read a lot of things. There’re a lot of opinions out there, and what one person says may not necessarily be true. It doesn’t take too much Googling around to find out that someone has already tried to carbonate something by sticking dry ice in a soda bottle and gotten a bunch of shattered plastic in his face as a result.

You don’t want to stifle anyone’s creativity or their desire to hack around and do things, because that’s the fun of it. But it has to be tempered with a certain amount of base knowledge. Things are dangerous under three circumstances: one, if you don’t know the procedure at all. That’s what happened to the soda bottle guy. He didn’t know the procedures. Two, you’re completely frightened of something, a piece of equipment or a knife. If you decide to use it anyway, you’re more likely to get hurt. Three, when you become complacent. If you’re an inherently cautious person and you don’t become complacent, that’s the safest way to do these kinds of experiments.

What about the safety of used equipment, such as lab gear?

When I got my centrifuge, we bleached and pressure-cooked any parts that would touch any food. When I got my rotovap, I soaked that sucker in a bleach solution and then in boiling water, and then boiling water and bleach. You have biological contaminants and you have poisonous contaminants—all sorts of contaminants. I feel pretty okay that with stainless and glass I can get rid of most bad inorganic stuff, but you just have to pray that you wash enough to get rid of all the organic stuff. From a biological hazards standpoint, you’re worried about prions, you’re worried that someone has been blending up cow brains doing Creutzfeldt–Jakob research or something like that. You can’t cook it away, they’re heat-stable. Then you’re counting on mechanical washing.

I’m curious, what do you do with a centrifuge?

A lot of people buy centrifuges because they think they’re going to get awesome results with a centrifuge. What you really need to do is borrow someone else’s first. All a centrifuge does is separate things based on density.

If you’re cooking, you want a lot of product, because you want to serve a lot of people. It’s not often feasible. Unilever donated a centrifuge to us, and I had more time just to play around. Now we’re doing a lot of things like making our own nut oils, or clarifying things like apple juice, where we’re spinning it down to increase our yield. Also, you can blend olives, cured ones like kalamata, and then you spin them. It breaks into three layers. You have the best olive brine ever for a dirty martini, hands down. You have a completely flavorless middle layer you throw away. Then you have a really interesting layer of olive oil from cured olives. That’s kind of fun. Expensive, though.

We’re taking things into the kitchen that aren’t from the kitchen, not just laboratory equipment. There’s a whole group of people that make their own chocolates. They use a stone grinder from India that’s used to grind dahl. We’ve taken that, and we’re making things that have the textural properties of chocolate, which aren’t related to chocolate at all, like ketchup and mustard. Most stuff in the kitchen is going to be equipment-based, but it’s not necessarily new technology or lab technology. Sometimes it’s just learning new techniques. It’s more of an attitude.

I’ll give you another example: how are you supposed to cook mushrooms? You’re not supposed to soak mushrooms. They always tell you to wipe off your mushrooms.

I usually just do a quick wash. My take has always been that it doesn’t actually absorb that much water.

It actually does. Mushrooms are little sponges, but here is the thing: our contention has always been that it’s just going to take longer to cook. Which is true. We did a test where not only did we soak the mushrooms in slice form but then crowded the pan—all the things that you’re not suppose to do with a mushroom.

The amazing thing was not that it didn’t make a difference in cooking them, but that the ones that we had soaked and crowded were better. The reason is because while the soaked mushrooms are sitting there giving off their water and stewing in their own juices, they’re collapsing. It’s no longer a sponge to soak up oil, so by the time all the water had boiled off and they started sautéing they had already collapsed, and they weren’t absorbing the oil. The non-soaked mushrooms, at the end of sautéing, had soaked up all of the oil and in fact wanted more oil. The ones that had been soaked hadn’t even absorbed all of the oil. Some of the oil was still left in the pan.

So just by normal observation, because we had measured things and were trying to figure out what was going on, we realized that everything that they teach you about mushrooms is wrong. You’re not going to measure every time, but you would never pick up on stuff like that unless you were really thinking analytically about what’s going on.

I think it’s actually the key to a lot of this. I think there is a certain something that drives some people to go to lengths, when other people just kind of shrug their shoulders and end up not being as curious.

Right, and that’s why Harold McGee’s website is called “The Curious Cook.” A lot of it is about curiosity and then after curiosity—and here’s where the real geek thing comes in—is the ability and willingness to actually do something about the curiosity. Go the stupid extra length. Just see whether you can do it.


The Easier, Cheaper Version of “The $10,000 Gin and Tonic”

The UK magazine Intelligent Life did a piece on Dave Arnold, including the “stupid extra length” he went to to make a perfect gin and tonic. Dave explains:

It was called the $10,000 gin and tonic because there was all this equipment and time, and rotary evaporation, and the PSI measured carefully, and clarifying juices, etc. I was redistilling lime essence to create a clear lime juice so that I could add that to my quinine simple syrup and gin and get the water level exactly where I wanted it and carbonate it. The reason you want it clear is because gin and tonic should be clear, and should have enough bubbles, and the right alcohol content. So I was able to break out every single variable and recombine them exactly the way I wanted.

The idea of the original recipe, Bottle Strength G ’n T, was to produce a gin and tonic shot at bottle strength (80 proof). To do it, we distilled lime juice and gin to capture the fresh volatiles from the juice and increase the proof of the gin. We then added acids back to the distillate to recreate the flavor of the lime juice, along with sugar and quinine, the bitter part of tonic water. Why all this? Adding sugar, acid, etc. lowered the proof of the gin. If we wanted to serve bottle-strength gin and tonic shots, we had to raise the initial proof. Plus, distilling the lime volatiles gave us a perfectly clear drink that carbonates well (pulp is a carbonation killer). We no longer serve this version, because it only tastes good at around 0°F / –18° C. Served any warmer than 5°F / –15° C, and it tastes unbalanced; any colder than –9°F / –23° C, and it is painful going down. It was hard to get people to drink quickly enough, when the shots were at the right temperature.

This same technique, when watered down to 15–20% alcohol by volume, produces our perfect G ’n T, and it’s much easier to do. I use what we call simple agar clarification on lime juice. I can do it in 20 minutes on a camp stove and I don’t need the high-end equipment to make it. It’s back to a normal cost in terms of equipment, except for a carbonation rig. The good news is that it’s very inexpensive to get a real carbonation rig at home. The whole carbonation rig costs well under $200. A single 20-pound tank of CO2 costs about $20 to refill, and it makes 200 to 400 gallons of seltzer or liquor. Everyone should have one in their house. Everyone.

Clarified lime juice. Squeeze the juice from 10 limes into a container, running through a sieve to remove pulp. Weigh the juice; it should be around 500g. Set aside.

In a pan, create an agar gel using water and agar. Measure out a quarter of the amount of lime juice in water, roughly 125g of water, and create a 10% agar gel, around 12g (this will result in a 2.0% concentration once mixed with the lime juice). Once the agar has melted, remove from heat and pour the water-agar mixture into the container with the lime juice and let it rest for half hour or so, until set.

Once the lime gel has set, use a whisk to break the gel into pieces. Take the whisk and make zigzag slashing cuts; don’t actually whisk the gel.

Transfer the broken gel to a cheesecloth (real cheesecloth, not the loose mesh stuff) or towel. Fold the cloth up into a ball.

Hold the balled cloth above a coffee filter and squeeze it with your other hand, massaging it to force out as much liquid as possible. (The coffee filter will catch any small chunks of agar that happen to leak through).

Simple syrup with quinine. Create a simple syrup (2 parts sugar, 1 part water), then add diluted quinine sulfate. Be careful! Quinine in anything other than minute quantities is poisonous! The legal limit is 83 parts per million of quinine, which is 0.083 grams of quinine sulfate per liter of liquid. You will need considerably less than this. Quinine goes from pleasantly bitter to extraordinarily bitter rather quickly. Make a solution of 1g quinine sulfate in 500 ml of water (or gin) and use no more than 40 ml of this solution per liter of finished product and you will be okay. You will probably like less than half that amount.

To assemble:

4 oz gin

2 oz clarified lime juice

Simple syrup with quinine to taste

Salt to taste

Chill in freezer. Carbonate to 40 PSI.

Top search
women
- 6 Ways To Have a Natural Miscarriage
- Foods That Cause Miscarriage
- Losing Weight In A Week With Honey
- Can You Eat Crab Meat During Pregnancy?
- Grape Is Pregnant Women’s Friend
- 4 Kinds Of Fruit That Can Increase Risk Of Miscarriage
Other
- Life with your New Baby : Feeding your Baby (part 2)
- Life with your New Baby : Feeding your Baby (part 1)
- Your Baby: 3–6 Months - Teething
- Your Baby: 3–6 Months - Is My Baby Ready for Solid Food?
- The Gleneagles Hotel : Layered Lemon and Raspberry Posset
- The Ivy's Salmon Fishcakes
- Life with your New Baby - 1st Week: Day 4 First outing - Taking your baby out
- Life with your New Baby - 1st Week: Day 3 Going Home - Sponge baths
- Sous Vide Cooking (part 9) - Cooking with Sous Vide - Chocolate - Chocolate Almond Bars, Flash Pickling with a Vacuum Sealer
- Sous Vide Cooking (part 8) - Cooking with Sous Vide - Chocolate
 
women
Top keywords
women
Miscarriage Pregnant Pregnancy Pregnancy day by day Pregnancy week by week Losing Weight Stress Placenta Makeup Collection
Women
Top 5
women
- 5 Ways to Support Your Baby Development
- 5 Tips for Safe Exercise During Pregnancy
- Four Natural Ways Alternative Medicine Can Help You Get Pregnant (part 2)
- Four Natural Ways Alternative Medicine Can Help You Get Pregnant (part 1)
- Is Your Mental Health Causing You to Gain Weight (part 2) - Bipolar Disorder Associated with Weight Gain